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By using the multiple-scales perturbation method, analytical solutions are obtained 
for the second-order low-frequency oscillations inside a rectangular harbour excited 
by incident wave groups. The water depth is a constant. The width of the harbour 
entrance is of the same order of magnitude as the wavelength of incident carrier 
(short) waves, but small in comparison with the wavelength of the wave envelope. 
Because of the modulations in the wave envelope, a second-order long wave is locked 
in with the wave envelope and propagates with the speed of the group velocity. 
Outside the harbour, locked long waves also exist in the reflected wave groups, but 
not in the radiated wave groups. Inside the harbour, the analytical expressions for 
the locked long waves are obtained. Owing to the discontinuity of the locked long 
waves across the harbour mouth, second-order free long waves are generated. The 
free long waves propagate with a speed of (gh); inside and outside the harbour. The 
free long waves inside the harbour may be resonated in a low-frequency range which 
is relevant to the harbour resonance. 

1. Introduction 
Large-amplitude harbour oscillations could create unacceptable vessel movements 

and excessive mooring forces leading to the breaking of mooring lines. The typical 
natural periods of a reasonable sized harbour or a moored vessel are of the order of 
magnitude of minutes. Therefore, they are not excited directly by the wind waves, 
since typical wind wave periods are of the order of magnitude of seconds. However, 
sea waves tend to travel in groups whose periods could be much longer than those of 
the carrier waves. Through nonlinearity second-order long waves exist under these 
wave groups (Longuet-Higgins & Stewart 1962). These long waves are more relevant 
to harbour resonances. 

Bowers (1977) studied the mean free-surface oscillations in a narrow rectangular 
channel of constant depth and a discontinuous width ; the length of the narrower- 
width section is finite and the wider section infinite. A train of sinusoidal modulated 
wave groups incident from infinity generates not only locked long waves but also free 
long waves. The speed and the direction of the free long waves are not directly 
associated with the wave groups. Bowers (1977) showed that the free long waves are 
generated because of the difference in the second-order mean free-surface dis- 
placements associated with the locked long waves across the junction of two 
channels. The free long waves can be resonated inside the narrow channel. The free 
long waves can also be generated by the refraction of wave groups over an uneven 
bottom (Molin 1982; Mei & Benmoussa 1984; Liu 1989) or a shear current (Liu, 
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Dingemans & Kostense 1990) and through the scattering of wave groups by a vertical 
cylinder (Zhou & Liu 1987) or a depth discontinuity (Agnon & Mei 1988). 

Recently, Mei & Agnon (1989) studied the long-wave oscillation induced by 
incident wave groups inside a rectangular harbour. The harbour basin is exposed to 
the ocean without any protection. The harbour entrance was assumed to be much 
wider than the short wavelength, but much smaller than the long wavelength. They 
obtained the approximate analytical solutions for short waves using the geometric 
ray theory complemented by the parabolic approximation. They demonstrated that 
the free long waves can be resonated inside the harbour. In this paper, we use a 
multiple-scales perturbation method to study a similar problem concerning the 
wave-group-induced harbour resonance. There are two major differences between the 
present paper and Mei & Agnon’s paper. (i) In the present paper the harbour mouth 
is assumed to be wider than the short wavelength (but it is not required to be much 
wider than the short wavelength), therefore the short waves are solved exactly by the 
diffraction theory (e.g. Miles & Munk 1961). (ii) The harbour basin is assumed to be 
a rectangle and is protected by a pair of thin breakwaters. To achieve a better 
understanding of the generation and amplification of long waves, we seek analytical 
solutions when it is possible. Several further simplifications are made in the analysis : 
(i) the depth is a constant, (ii) the coastline is a straight line and vertically walled, 
and (iii) energy dissipation is ignored. Under these assumptions, the analytical 
solutions for the first-order carrier waves are available (e.g. Miles & Munk 1961) and 
are used to compute the forcing functions responsible for the generation of the 
second-order long waves. The analytical expressions for both locked and free long 
waves inside and outside the harbour are obtained. From numerical examples it is 
shown that only the free long waves are resonated at  low frequencies ; the locked long 
waves may be ignored for practical purposes. In the higher frequency range both 
locked and free long waves could be resonated. 

In the following section the governing equations, boundary conditions and the 
multiple-scale perturbation method are summarized. The first-order, first-harmonic 
solutions are given in $3. In $4, the second-order wave field is derived, As a special 
case of the rectangular harbour, the general solutions are reduced to the case of a 
narrow bay. Numerical results for the incident wave group which consists of two 
short-wave components are discussed in $ 5 .  

2. Formulation of the problem 
Consider a rectangular harbour basin connected to a straight line coast. As shown 

in figure 1, the width of the harbour is B and the length is L. These horizontal 
dimensions are assumed to be much longer than the typical wavelength of incident 
short waves. The width of the harbour entrance is denoted as 2a and is assumed to 
be of the same order of magnitude as the wavelength of the carrier waves. The water 
depth, h, is a constant in the entire region and is of the same order of magnitude as 
the wavelength of the short waves. Assuming that the water is inviscid and the flow 
is irrotational, the velocity potential @ can be introduced and it must satisfy the 
following governing equation and boundary conditions : 
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! 
FIQURE 1. A sketch of a rectangular harbour. 

_ -  - 0 ( z  =-h) ,  a@ 
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where z = c(x, y, t )  represents the free-surface displacement. The normal velocity 
component along the solid walls, such as the vertical walls of the harbour basin and 
the coastline, must vanish. 

The incident wave groups propagate with an angle, 0,, and the wave envelope is 
colinear with the carrier waves, which have a dominant wave frequency w .  The 
envelope modulates slowly in both space and time. We assume that the wave slope 
of the carrier waves is of O(E) < 1. The time- and lengthscale of the wave envelope 
are O(s-l)  times those of the carrier waves. It is, therefore, convenient to use the 
following slow variables : 

(X, Y) = ( E X ,  E Y ) ,  T = ~ t .  (2.5) 

We seek the perturbation solutions : 

in which 
respectively, x = 

and @(n, -m) are the complex conjugates of &n,m) and @(n,m) ,  

(5, y), and X =  (X, Y ) .  
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Substitution of (2.6) and (2.7) into the governing equations, (2.1)-(2.4), yields a set 
of equations for &n,m) and @ ( n , m ) .  Symbolically, these equations can be expressed as 

(2.10) 

The free-surface boundary conditions have been linearized and are evaluated at  z = 
0. The functions qn,m) and G(n,m)  are expressed in terms of solutions of order lower 
than n. Their explicit forms can be found in Zhou & Liu (1987) and are also given in 
the following sections when they are needed. The no-flux boundary condition along 
the solid boundaries requires 

(2.11) 
a 
- an @ ( n ,  m) = 0 on the solid boundaries, 

where n denotes the unit normal along the solid boundaries. 

3. T h e  first-order short-wave solutions 
The first-order solutions contain two components : the first-harmonic (short wave) 

component, @(l, and the low-frequency modulation component, @(l,o). The 
governing equations for the first-harmonic potential are the well-known linearized 
boundary-value problem : 

a 
G@(l,l) = 0 (2 = -h ) ,  (3.3) 

a 
-@(l,l) = 0 ( - L  < x < 0, y = 0 and B) ,  (3.4) aY 

(X = -L, 0 < y < B, 

(3.5) 

where x = O +  denotes the shoreline, while x = 0- represents the harbour side of the 
solid boundary. The scattered waves must be outgoing waves a t  infinity (x > 0, 
r+oo). 

The incident first-harmonic wave potential is the superposition of N pairs of 
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muo (n = colinear short waves with wavenumbers k f enk, and wave frequencies w 
1,2 ,3 ,  ..., N ;  provided that ei? < 1 ) .  Thus 

with 

$* = k (x  cos 8, + y sin O1), 

and the incident wave envelope is a function of the slow variables (X, T ) ,  
N 

A 1 = A ( ! P - w o T )  = C A',exp[in(!P-w,T)], 
n=-N 

where w0 Y1 = k,(X cos Or + Y sin O,), C, = %, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

and A: (n = + 1 ,  +2, f3, ... , +N) are constants. 
For monochromatic waves (i.e. A' = constant), the procedure for obtaining 

analytical solutions for the wave potential governed by (3.1)-(3.5) has been outlined 
by Miles & Munk (1961). Because the boundary-value problem for the first-harmonic 
potential is a linear one, the solutions subject to the incident wave groups defined in 
(3.6) can be readily obtained from the solutions for monochromatic waves by using 
the principle of superposition. 

Outside the harbour the first-harmonic potential can be decomposed into the 
incident wave, the reflected wave, and the radiated wave potentials: 

G : ~ , ~ )  = & f ( z )  [A'exp (i$I) +Arexp ( i p )  +PI, (3.11) 

where A' and p are the reflected wave envelope and the associated phase function, 

A'= A~exp[in(!P--w,T)], (3.12) 

w 

N 

n=-N 

p = k(-xcos8,+ysinO1), (3.13) 

in which !P = k,( -X cos 8, + Y sin el). (3.14) 

Note that the reflected wave envelope propagates in the same direction as the 
reflected short waves. The no-flux boundary condition along the shoreline, x = 0, is 
satisfied by the sum of the incident and reflected wave potentials. The radiated 
waves can be expressed as 

r#s = A i l  (-$i)H$l)(kr) U,(q)dqexp[in(k,R-w,T)], (3.15) 
N 

n=-N M 

with R = [ P f ( Y - e ~ y , ) ~ ] f ,  r = [ X ~ + ( ~ - T ) ~ ] : ,  \ dT = r d i ,  (3.16) 
J, J u,-a 

where U,(q)  is the first-order normal velocity along the harbour mouth, and HC) is 
the Hankel function of the first kind and zeroth order. The radiation condition is 
satisfied by the radiated waves. 
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Inside the harbour the first-harmonic wave potential can be expressed in terms of 
the Green’s function for the rectangular basin with the normal velocity U,(r) across 
the harbour mouth. Thus, 

m 

q . 1 )  = Zf(4 c ~ ~ , l ~ ~ P ~ ~ ~ , ~ ~ + ~ ~ 1 + ~ , 2 ~ ~ P  [-ik,(X+L)l}cOs(p,Y) 
P-0 

( -L  < x < 0, 0 < y < B) ,  (3.17) 

p, = P - 7  k, = ( k 2 - # q ) ,  (3.18) with 

where k, could be either a real or an imaginary number; the real values correspond 
to the propagating modes and the imaginary values represent the evanescent modes. 
For convenience, we order the values of k, in such way that the first &-numbers are 
real and the rest of them are imaginary. I n  (3.17) A,, and A,, are slowly varying 
functions and are related to each other through the no-flux boundary condition a t  

B 

where %q(kn) = /mcos(pqq) ~n.(q)dq, (3.21) 

k,, = (R2,-E)f = k +nsko,+0(e2), An = k+enk,, k,, = -, kko (3.22) 
E ,  

P 

and s, = 1, for rn = 0, and E ,  = 2, for m 2 1. 
To complete the first-order and first-harmonic solution, one has to find the normal 

velocity distribution across the harbour mouth, Un(q). Requiring the free-surface 
displacement to be continuous across the mouth of the harbour, the following 
integral equation is obtained (Miles & Munk 1961) : 

Jmxn(y,q) Un(q)dq = ~ i e x p  [ i (knysine~l ,  (3.23) 

for the nth component, where the kernel function is 
m 

x n ( Y >  7) = - C emcot(kmnL)~os kmnB (p,y) c o s ( p , r ) + ~ ~ ~ ) ( R , l y - q l ) .  (3.24) 

The integral equation (3.23) can be solved numerically for a given set of wave 
parameters and harbour geometry. 

m=o 

4. Long waves and mean free-surface displacement 
and the corresponding second- 

order dynamic free-surface displacement &, ,) are presented. The governing 
equations for 

In this section the solutions for the long wave 

can be written as 
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where * denotes the complex conjugate of the preceding term, and the overbar in (4.1) 
distinguishes the self-products of the propagating waves from the rest (Agnon & Mei 
1985). The forcing terms in (4.1) are functions of the slow variables only. Once @(l,o) 

is solved, the corresponding free-surface displacement can be calculated from the 
time-averaged Bernoulli equation on the still water level : 

Now consider the forcing functions in (4.1). On the ocean side, x > 0, the first- 
order, first-harmonic wave potential is made up of the incident wave potential, @tl, 1), 

the reflected wave potential, @TI, 1), and the radiated wave potential, @:l, 1), as defined 
in (3.11). Only the self-products of each wave component contribute to the forcing 

(4.5) 
d 

with L[@tl, 1)l = 6s lH'I2, 

L[@';l,l)I = @= IArl2, (4.6) 
a 

L[@Sl,l)l = 0, (4.7) 

(4.8) w2 
8 = -  2-+ 

k cosh2kh cg 1 ' g2k2( 
where 

in which X' = Y'/ko and X* = P / k o  denote the directions of the incident and the 
reflected wave propagation, respectively. The radiated waves propagate in the radial 
direction and their amplitudes decay as r-f as r becomes large. The self-products of 
the radiated waves are functions of the fast variables. Therefore, the radiated waves 
do not contribute to the forcing functions for the long waves (Zhou t Liu 1987). 

The long waves in the ocean can be decomposed into the locked long waves 
propagating with the incident wave envelope @tl,o), the locked long waves associated 
with the reflected wave groups, q1,,,, and the free long waves, 6:l,o,. Hence, 

(4.9) 
- 

@?I, 0) = @ ? l , O )  + %LO) + &?I, 0 )  

A - g h a  a@ a 2 6 1  = 6-IA112 a 
a p  a(xy ax1 ' 

aP@f1,0)-gh'2@b,o) = E-IAr12 a 
a p  a(xy a F  

(4.10) 

(4.1 1) 

where 
- I 

and (4.12) 
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We integrate (4.10) and (4.11) to obtain 
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where 

@tl,,) - = ={ Q -- i 2N x -exp[in(Y1-~,T)]+*+C,(X1-C,1')). C, (4.13) 

- 6 

g gh k o n - 1  n 

i 2N C, 
= -{ k, n=l n 

-- x -exp[ in(IYP-uoT)]+*+Co(F-CgT)  

2N 
= C. Cn exp [in( Yr - wo T)] + * + C,. (4.15) 

n=l 

In  (4.13) and (4.14) the linear terms in XI and 2? represent the steady currents 
associated with the incident and reflected waves, while the terms linear in T 
contribute to the steady mean free-surface set-down. 

The free long waves outside the harbour can be written as 

2N 

=&{ColnR+DoT+ n-1 I: &exp(-inu,T) 
g - g h  

In (4.16~) Co and Do represent the steady current and the steady set-down associated 
with the free long waves and G(X, Y; 6, q) is the Green's function for the wave 
equation, (4.12), associated with a periodic point source/sink located at ( 6 , ~ )  with a 
frequency nu,. The Green's function can be expressed as 

with 

G(X, Y ;  C; = O , q )  = -aiHil)(nako%), 

a = [X* + (Y-q)2]4, 

01 = C,(gh)-k 

(4.17) 

(4.18) 

(4.19) 

In  (4.16~) V(q)  represents the normal velocity, associated with the long waves, across 
the harbour entrance. For later use, we record the velocity potential for the free long 
waves and the corresponding flux across the harbour mouth here: 

x Jme-$i [ 1 +:ln (ivnak, IY- 111) V(q)  dv + * , (4.20) 1 1  
(4.21) 

where the width of the harbour entrance has been assumed to be much smaller than 
the wavelength of the incident wave envelope. Note that the velocity V(q)  has been 
scaled in such a way that total flux across the harbour mouth is unity. The 
amplitudes of the free long waves, En, in (4.16) need t o  be determined. 
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The long waves inside the harbour can also be decomposed into locked long waves 

(4.22) 
and free long waves, i.e. 

@ K O )  = @:, 0)  + $:, 0 )  

where (4.23) 

(4.24) 

The first-order, first-harmonic waves inside the harbour basin, given in (3.17)-(3.24), 
consist of two sets of progressive waves propagating in the +x-directions and 
evanescent modes. The amplitudes of the progressive waves oscillate in the y- 
direction. Similar to the situation outside the harbour, only the propagation modes 
contribute to the forcing functions for the long waves. Therefore, 

(4.25) 
q-0 

where 9 q 1  = ;;f(z)Aqlexp is [ikq(s+L)I (30s (PllgP)' (4.26a) 

9 Q 2  = , f ( 2 ) A q 2  is exp [-ikQ(z+L)l 'OS (PqY) '  (4.26b) 

Substituting (4.25) and (4.26) into the operator, L(, defined in (4.2), we obtain, after 
some algebraic manipulations, 

(4.27) 

where Bq = & S2k [2w + kCg( 1 - yz ) ] ,  y = tanh kh. (4.28) 

The locked long waves inside the harbour can now be obtained by integrating (4.23) 
with (4.27): 

(4.29) 
Q-0 7&=1 

(4.30) 

2 N  

where IAq112 = C Ppnex~{in[koq(X+EL)--WgTI}+*+l)qo, 
n-1 

c = w g = c 9 .  k 
gQ ko, g k  

Both b and pqo contribute to the steady component of the second-order free-surface 
displacement. While pqo is a known quantity, fi is to be determined. Because the no- 
flux boundary conditions along the solid walls of the harbour must be satisfied, the 
steady current at this order is zero. The corresponding free long waves inside the 
harbour can readily be written in the following form: 

20 FLM 217 



604 J.-K. Wu and P. L.-F. Liu 

Pn 
€B 

o,, = - 

(4.32) 

J 
and A,, is to  be determined. The free long waves also satisfy the no-flux boundary 
conditions along the sidewalls of the harbour basin. The integration constant, D, 
which affects the steady component of the second-order free-surface displacement 
inside the harbour, is also to be determined. 

To complete the solutions for the long waves inside and outside the harbour, 
matching conditions across the harbour must be used. Similar to the first-order, first- 
harmonic solutions, continuity of the second-order pressure and the second-order 
flux along the harbour mouth is required: 

% , o ,  + 6 , O )  + & , O )  = @ , O )  + q , o ,  (X = 0, IY-q/,l < €a),  (4.33) 

a 
lim ( nR- 'fro)) = r,[c.6z,,)+c6:,,JdY (X= 0 ) ,  
R+O 

(4.34) 

in which the fact that  the sum of the incident and reflected locked long waves satisfies 
the no-flux condition along the coastline, X = 0, has been used. Substituting (4.21), 
(4.29), and (4.31) into (4.34), we collect the coefficients for each time harmonic, 
including the steady component, and obtain 

Ci-gh ' 2 9  2iBpq, 6, = A,,+--- c -- sin [nek,,L) (n = 1,2 ,  ..., 2 8 )  ( 4 . 3 5 ~ )  
6 q=o E q  Ci*-Sh 

co = 0. (4.35 b)  

Substitutions of (4.13), (4.14), (4.29), and (4.35) into (4.33) yield, for the steady 
componect, - - 2 C , C g 6  D+D=- 

Ci-gh ' 
(4.36 a) 

(4.36 b)  

' 2Qq 2Pqn 
q=o E q  Ci,-Sh 

W( Y )  = 2C, exp (ink, Y sin 0,) - x -~ 

C2 - gh k, G"p-gh Q 2 9  
(fi ko, 6 q-0 E q  

X L -  cos (nsk,,L) +ink, x Q sin (nsk,, L)  
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The integral equation (4.36 b )  can be solved by a variational method (Miles & Munk 
1961) as 

j.*ow(Y) V(17) d7 
A,, = - Nn = (4.39) 

V Y )  KAY, 17) V17) dYd17 Dn 

For a given velocity distribution, V ( v ) ,  (4.39) may be evaluated. 

the long waves, we can approximate the velocity distribution as 
Assuming that the harbour mouth is small in comparison with the wavelength of 

(4.40) 
1 

V(7)  = -[(sa)a-(€yO-?#]-f. 
I(; 

Equations (4.39) can be written as 

2 9  2pqn 
9-0 €9 fZ,--Sh 

N , = 2Cn exp (ink, ey, sin 0,) - Q 

Ci-gh k, '- h ' 2 9  
X - cos (nsko,L) + ink, 'g 3 

8 ko, 6 9-0 Efl 

X sin (mkoq L )  q* - gh 
(4.41) 

cot (ex,, L )  cos2 (p, yo) J;4(pq a)  - ii 
(4.42) 

The long wave potential, @(l,o), is completed. 
The corresponding second-order free-surface displacement can be obtained from 

(4.3) by using the formulae for @(l,l) and @fl,o). Inside the harbour, the dynamic 
component of the free-surface displacement can be split into two parts : the second- 
order mean free-surface displacement associated with free long waves, and locked 
long waves..Thus, from (4.3) 

G, 0 )  = e, 0 )  + @, 0 )  9 
(4.43) 

+m-$fzgq=J ( z = O ) .  (4.45) 

After some manipulations, the mean free surface can be written explicitly as 

2N inwoQ s q c o s [ X q n ( X + ~ ) ]  
sSX,, sin (eX, ,  L )  '?k O) = - zo { g(Ci - gh) 

x cos (Poq Y )  cos cp, yo) J,(P, a)  exp ( -  in% T) + *, (4.46) 
20-2 
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where 0 is given by (4.8), and 
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cos [nk,,(X + EL)] exp ( - inw, T) + * 

g2k2 
2w 

9' = ?(1-tanh2kh). where (4.48) 

The steady-state component of the second-order free-surface displacement can be 
obtained from (4.3) or by taking the limit of (4.43) for uniform incident waves, wo = 
0. The details of the steady set-down will not be discussed here. 

5. Numerical examples 
In this section we consider an incident wave group which consists of two colinear 

short waves with slightly different frequencies, w1 and w2. The corresponding 
wavenumbers are k, and k,, respectively. For simplicity we further assume that the 
amplitudes of the wave components are the same. The wave envelope of the incident 
wave group can be written as 

N 

A' = AT, exp [in(Y1-wo T)] = A cos ( Y I - w ,  T), (5.1) 

(5.2) 

n--N 

I where A: =A!,  =la, AT, = A ? ,  = O forn =+ 1, 
2~k ,  = k,-k,, ~ S W ,  = o,-o,, 2k = k , + k , ,  

and !PI is defined in (3.10). The first-order, first-harmonic potential can be completed 
by substituting (5.1) and (5.2) into (3.11) and (3.17). From (4.15) the Fourier 
coefficients for 1.1'1, can be expressed as 

+A2, for n = 2. O ,  for n * 2  

Using (5.3) in (3.21) and (4.30), we obtain 

(5.3) 

(5.4a) 

€; q k 1 )  Y,*(L1)A2 
pQ2 = 4kQ1 kp*-l B2 sin (k,, L) sin* (kQ-l L) ' (5.4c) 

with k,, = (R: - f i ) i ,  kQ-l = (k21-fi)i ,  4, = k+eko, A_, = k - ~ k , ,  (5.4d) 

where * denotes the complex conjugate. Substituting (5.3) and (5.4) into (4.39), 
(4.41), and (4.42), we find 

(0, for n + 2 

, for n = 2, 
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2 9  2pq2 

9-0 €9 Cia-$h 
N, = $4, exp (2ik0 eyO sin 0,) - 4 

Ci  - gh ko C-gh Q 2 9  
X -cos (2ekOQL) + 2 i k 0 B - -  3 
6 ko, Oi Q-0 €47 

X 2iapq2 sin(2eko,L) 
C " J 7 h  

607 

D, = -2ik0 cot ( E X ~ ~ L ) C O S ~ ( / ~ ~ ~ ~ ) ~ ( / ~ ~ U ) - ~ ~  

(5.7) 

From (4.29) and (4.31) the locked and free long waves inside the harbour can be 
expressed as 

6E,o) = Q { - i p  2 9  cos[2koQ(X+EL)lexp(-2 iwoT)+*} ,  (5.8) 

9-0 ko, €9 cg, - gh 

x ~ 0 ~ ( / 3 ~ y ~ ) J ~ ( ~ ~ a ) e x p ( - 2 i w ~ T ) + * .  (5.9) 

The corresponding second-order dynamic free-surface displacement can be expressed 
as 

x COB [2ko,(X+ EL)] exp ( - 2iwo T) + *). (5.11) 

For convenience, the second-order free-surface displacement can be written as 

G . 0 )  = &,O) + cg, 0) = (A:, 0) + 4 , 0 ) )  exp ( - 2iwo T) + *. (5.12) 

The amplitude of the second-order free-surface displacement can be defined as 

A:,,, = 2 l4 ,O)  +A":.o,L (5.13) 

which can be normalized as 

where 

(5.14) 

(5.15) 

Note that R(kh) is a function of kh only and increases monotonically as kh decreases 
(see figure 2). 

From (5.9) and (5.10), the free long waves start to resonate as (sX,,L) approaches 
nn, where n = 0, 1,2,  . . . . According to the definitions given in (4.32), this implies that 
when the wavenumber of free long waves is close to one of the natural modes of the 



608 J.-K. Wu and P. L.-F. Liu 

I 

kh 
FIGURE 2. The depth function R(kh).  

closed basin, (2ask0) = [ ( ~ T c / L ) ~ +  ( ~ T c / B ) ~ ] ~ ,  resonance should be expected. A more 
accurate estimation of the resonant wave envelope wavenumber can be obtained 
from a simple perturbation analysis (Unluata & Mei 1973). In the neighbourhood of 
the natural modes of the closed basin we assume 

(2a%)nP, = (ko )n ,+4  ( 5 . 1 6 ~ )  

and (5.16b) 

Substitution of (5.16) into (5.9) or (5.10) yield an approximate solution for A at 
resonance. The procedure is straightforward and can be found in Mei (1983) for short 
waves and in Wu (1988) for long waves. The details of this analysis are omitted here ; 
only the results are presented. Thus, for non-Helmholtz modes, i.e. n + 0 and q =I= 0, 

A A = - - -  
5 '  

( 5 . 1 7 ~ )  

(5.17b) 

in which X,, is defined in (4.32). Near the Helmholtz mode, A is the root of the 
following equation : 

d2LB In (tvda) + TC = 0. (5.18) 

Numerical computations are performed for a square harbour basin (B/L = 1.0) 
with normal incident waves (8, = K). The following two sets of parameters are used 
in computations: (a) kh = 0.5, kL = 20, a/B = 0.1, yo/B = 0.5, and ( b )  kh = 0.5, 
kL = 40, a/B = 0.2, y , / B  = 0.5. In the second case the harbour entrance is much 
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FIGURE 3. Normalized mean free-surface displacement, A&), at the corner (x = -L ,  y = 0) of a 
square harbour as a function of the normalized wavenumber of the incident wave group, sk,L. The 
following parameters are used: (a) kh = 0.5, kL = 20, B/L = 1.0, a/B = 0.1, y,/B = 0.5,8,  = A ;  and 
(b )  kh = 0.5, kL = 40, B / L  = 1.0, a /B  = 0 .2 ,  yo /B = 0.5, 8, = x. -, Complete solution; ----, 
without the locked long waves inside the harbour. 

wider than that of the first case. In figure 3 the normalized second-order free-surface 
displacements, A:,,), at the corner of the harbour (x = -L ,  y = 0) are plotted for 
different values of the normalized wavenumber for wave groups, sk,L. The first 
resonant peak, corresponding to the Helmholtz mode, occurs at  sk, L = 0.396 for the 
first case, and at sk, L = 0.445 for the second case with a wider harbour entrance. The 
lowest three resonant wavenumbers predicted by (5.17) and (5.18) and numerical 
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Approximated theoretical results Numerical 
Modes (5.17), (5.18) solutions 

(a )  
n = 0,q = 0 
n = 1 , q  = 0 
n = 2,q = 0 

n = 0, q = 0 
n =  l , q = O  
n = 2,q = 0 

(b)  

0.389 
1.932 
3.643 

0.66 
2.10 
4.33 

0.396 
1.897 
3.660 

0.45 
1.93 
3.96 

TABLE 1. Resonant wavenumbers of the incident wave envelope, ek,L. (a) kh = 0.5, kL = 20, 
B / L  = 1.0, a/B = 0.1, y,/B = 0.5, and BI = x ;  ( b )  kh = 0.5, kL = 40, B/L = 1.0, a/B = 0.2, y,/B = 
0.5, and 8, = x 

3.0 

16 17 18 19 20 21 22 23 24 
kL 

FIGURE 4. Harbour response for the first-order waves, AP,,,,, as a function of the normalized carrier 
wavenumber, kL. The following parameters are: kh = 0.5, B/L  = 1.0, a/B = 0.1, y,/B = 0.5. 

solutions are listed in table 1 for both cases. The approximated analytical results 
agree with the numerical solutions very well for the first case, but not so well for the 
second case. This is because the approximated analytical solutions are based on the 
approximation that the harbour entrance is small in comparison with the dimension 
of the harbour basin. 

For purposes of comparison, numerical results are also obtained for the problems 
in which the locked long waves inside the harbour are artificially ignored. (The free 
long waves inside the harbour are obtained by using_the matching conditions (4.33) 
and (4.34) without the locked long wave terms, @:,?).) The differences in these 
numerical results are rather small for ekoL < 1.0, indicating that the locked long 
waves inside the harbour might not be important in evaluating the second-order 
dynamic free-surface responses within this range of frequencies. For the first case 
with a smaller harbour entrance the seconday peaks appearing in the full solution 
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FI~URE ~(u-c). For caption see next page. 
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-3t 
FIGURE 5. Snapshots of the mean free-surface displacements inside the square harbour as 
described in figure 3(6) near two resonant wavenumbers: (a )  sk,L = 0.445, 2w,t, = 0 ;  ( 6 )  sk,L = 
0.445, 2w,t1 = X ;  ( c )  Ek,L = 1.92, 2w,tl = 0 ;  ( d )  tk,L = 1.92, 2 ~ , t ,  = X .  

(solid line in figure 3a) correspond to  the resonant peaks of the carrier (short) waves. 
To illustrate this point more clearly, we define the normalized first-order harbour 
response as 

(5.19) 

In  figure 4 the first-order harbour responses are plotted using the same set of 
geometrical parameters as for the first case. Because the incident waves are the 
superposition of two short-wave components, k eko, the incident short waves are 
resonated at ( k + e k o ) L  x (19.95,20.05), (18.9,21.1), and (17.2,22.7). For kL = 20 
these four sets of resonant frequencies correspond to ekOL x 0.05, 1.1, and 2.7. For 
the second case where the harbour entrance is much larger than the short wavelength 
the influence of the short-wave resonance on the long-wave responses is relatively 
weak within the given range of ek,L. 

In  figure 5 the mean free-surface displacements inside the harbour near the first 
resonant frequencies (ekoL = 0.445 and 1.92) of the second case with a larger harbour 
entrance are plotted. The mean free-surface displacements are shown at 2w,t, = 0 
and 7c. Near the first resonance (Helmholtz) mode, the free-surface displacements are 
more or less uniform inside the harbour except in the vicinity of the harbour mouth. 
At the second resonance mode, the second-order mean free-surface displacements 
behave as a standing wave in the x-direction. 

Numerical results have also been obtained for different harbour shapes, i.e. B =+ 
L, and for different locations of the harbour mouth. The response curves for the 
second-order mean free-surface displacements for different harbour geometry are 
similar to figure 3 and will not be reported here ; the detailed results can be found in 
w u  (1988). 

6.  Concluding remarks 
Assuming that the water depth is a constant and the coastline is a straight line, we 

obtained analytical solutions for the sacond-order long-wave oscillations in a 
rectangular harbour basin, excited by incident wave groups. It is shown that 
although both locked and free long waves exist inside the harbour basin, the 
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reponses in the neighbourhood of the lowest resonant mode are dominated by free 
long waves. The locked long waves could be ignored for all practical purposes. Since 
it is extremely difficult to calculate the locked long waves inside a harbour basin with 
an arbitrary shape and a varying depth, this conclusion could simplify the matter 
significantly. 

It should be reiterated here that because of the simplifying assumptions used in 
defining the geometry of the harbour, topography, and the shoreline configuration, 
important physical features such as shoaling and refraction outside the harbour, the 
energy losses due to flow separation near the harbour entrance and wave breaking 
nearshore are not considered. Future research should include some or all of these 
features. 

The research reported here was supported by the New York Sea Grant Institute 
through a research grant to Cornell University. The manuscript was written when 
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